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The catalysts of choice for enantioselective intramo- 
lecular metal carbene transformations of diazoacetates 
are chiral dirhodium(I1) carboxamidates, particularly 
dirhodium(I1) tetrakis[methyl2-oxapyrrolidine-5(S)-car- 
boxylatel, Rh2(5(S)-MEPY)4, and its enantiomeric form 
Rhz( 5(R)-MEPY)4,1-6 and when diastereocontrol is also 
an important consideration, dirhodium(I1) tetrakis- 
[methyl 2-oxooxazolidine-4(R or S)-carboxylatel, Rh2(4(S)- 
MEOX)( or Rh2(4(R)-MEOX)4,7 and dirhodium(I1) tetra- 
kidmethyl l-acetyl-2-oxoimidazolidine-4~S~-carboxylatel, 
Rh2(4(S)-MACIM)4,s offer advantages. Enantioselective 

A- u 
A = CH2, Rh2(5SMEPY)4 

'N%'OOMe A = 0, Rh2(4SMEOX)4 P/ I /  A = NCOMe, Rh2(4SMACIM)4 

catalytic cyclopropanation reactions have been employed 
with increased frequency as key steps in the synthesis 
of natural products and/or physiologically active com- 
p o u n d ~ . ~ - ~ ~  Similar applications with inherently more 
complex intramolecular C-H insertion reactions of pri- 
mary alkyl diazoacetates have not been possible because 
of limitations in the existing complement of chiral 
dirhodium(I1) carboxamidates for highly enantioselective 
and regioselective insertion into a remote, unactivated 
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Key: (a) H2 (2 atm), 5% Pd/C, MeOWEtOAc (1:l); (b) LiAlH4, 
THF, reflux; (c) diketene, THF, reflux; (d) MsN3, EtsN, CHsCN, 
25 "C; (e) LiOHqH20 (3 equiv), CH3CNIH20, 1.5 h; (D RhzL*4 (2.0 
mol %), CH2C12, reflux. 

prochiral C-H bond.12 Because of their general acces- 
sibility via this methodology, we have targeted dibenzyl- 
butyrolactone lignans (Scheme l)I3 and now report their 
highly enantioselective (and regioselective) syntheses 
through C-H insertion with the use of chiral oxoimida- 
zolidine carboxylate-ligated dirhodium(I1) catalysts that 
are optimal for this conversion. 
3-(m-Methoxyphenyl)prop-l-yl diazoacetate (6) was 

prepared from m-methoxycinnamic acid by standard 
methods in 59% overall yield. Diazo decomposition of 6 
in refluxing CHzClz containing 2.0 mol % Rh2(5(R)- 
MEW4 produced the y-ladone product from C-H inser- 
tion (7) in 66% isolated yield with 68% ee for the (4R)- 
enantiomer (Scheme 2).14 The Rh2(4(S)-MACIM)4 cata- 
lyzed reaction provided no advantage; 75 was formed 
with 84% ee but in only 25% isolated yield. Recognizing 
that further elaboration of the N-acyl group of the 
MACIM ligand could significantly influence approach of 
the pendant alkyl group to the carbene center, methyl 
1-(3-phenylpropanoyl)-2-oxoimidazolidine-4(S)-carboxy- 
late and its 4(R) enantiomer were prepared from L- and 
D-asparagine, respectively (Scheme 3), and the corre- 
sponding dirhodium catalysts (10) were synthesized from 
them in 57 and 48% yield, respectively. The X-ray crystal 
structure of Rh2(4(S)-MPPIM)4(CH3CN)2 (Figure 1) shows 
the basic stereochemical relationship of the methyl 
carboxylates and N-(3-phenylpropanoyl) groups on each 
face of this dirhodium(I1) catalyst; noteworthy is the 
relative openness of the area around the ligand labeled 
a (top) so that the 3-arylpropan-1-yl group of the resident 
carbene can be expected to orient itself for C-H insertion 
in this quadrant. 

Use of Rh2(4(R)-MPPIM), (2.0 mol %) converted 6 to 7 
in 63% yield and in 93% ee. Enantiomer separation was 
achieved with baseline resolution by GC on a 30-m 
Chiraldex A-DA column, and % ee values are reported 

(12) 2-Phenyl-1-ethyl diazoacetate underwent Rh2(5(R)-MEPY)4 
catalyzed C-H insertion into the benzylic position to form 4(S)- 
phenyldihydro-2(3H)-furanone in 46% ee (42% yield).5 1-Butyl diazo- 
acetate gave the corresponding y-lactone in 69% ee with Rhz(S(S)- 
MEPY)4, 63% ee with Rhz(4(S)-MEOX)4, and 85% ee with Rhz(4(S)- 
MACIM)4. 

(13) (a) Ward, R. S. Tetrahedron 1990, 46, 5029. (b) Ward, R. S. 
Chem. SOC. Rev. 1982, 75. ( c )  Ayres, D. C.; Loike, J. D. Lignans; 
Cambridge University Press: New York, 1990. 

(14) With 1.0 mol % of Rh2(5(R)-MEPY)4 the isolated yield of 7 was 
only 18% and its enantiomeric excess was 65%. 
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6) with 91 f 2% ee. "he absence of either p-lactone or 
&lactone byproducts in the RhZ(MPP1M)d induced con- 
version of 6 to 7 exemplifies the exceptional regiocontrol 
provided by these catalysts. 

3-Aryl-1-propyl diazoacetates 13 were also prepared 
from their corresponding cinnamic acids (53% yield, 13a; 
74% yield, 13b) and subjected to diazo decomposition in 
the presence of chiral dirhodium(I1) carboxamidates (eq 
2). Lactones 14 were obtained in good yields (14a, 67% 
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Key: (a) CBzC1; (b) Br2, NaOH, 50 "C; ( c )  MeOH, SOC12; (d) 
PhCH2CHzCOC1, pyr, DMAP, (e) H2,5% Pd/C, MeOH. 
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Figure 1. Thermal ellipsoid plot of F&(4(S)-MPPIM)4 (CH3- 
CN)z without axial acetonitrile ligands. Thermal ellipsoids are 
scaled to the 30% probability level. Most hydrogens have been 
omitted for clarity. 

from these analyses.15 Subsequent alkylation of 7R and 
removal of the 0-methyl groups provided (-)-enterolac- 
tone (12R) in 70% yield from 7R (eq 1). 
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Application of %2(4(S)-MPPIM)d with the same series 
of reactions led to (+I-enterolactone in 46% yield (from 

(15) Values for % ee calculated from the literature values for specific 
rotation varied by +3% compared to those obtained by GC analysis; 
7R, [aIz0~ = +6.41: (a) Yoda, H.; Kitayama, H.; Katagiri, T.; Takabe, 
K. Tetrahedron 1992, 48, 3313. (b) Groen, M. B.; Leemhuis, J. 
Tetrahedron Lett. 1980,21, 5043. 

1 3  a. ~ 1 ,  ~2 = O C H ~ O  1 4  
b. R 1 = R 2 = H  

yield; 14b, 56% yield) and high enantiomeric excesses 
(94% ee for 14a; 91% ee for 14b) with the use of Rhz- 
(MPPIM)4 catalysts. Thus, this new chiral dirhodium- 
(11) oxoimidazolidinecarboxylate catalyst offers substan- 
tial advantages in both chemical yields and % ee over 
existing catalysts for intramolecular insertion into 
prochiral C-H bonds of remote unactivated methylene 
groups. Alkylation of 14a in its predominant R- or 
S-configuration produced (-)- and (+)-hinokinin (16aR 
and lSaS), respectively, in 76 and 70% yield. 
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Numerous strategies to achieve stereocontrolled syn- 
theses of the various classes of lignans, which are 
indigenous in plants but also isolated from mammals, 
have been deve10ped.l~ For dibenzylbutyrolactone lign- 
ans, asymmetric syntheses have focused on diastereose- 
lective alkylation or aldol reactions of monobenzyl- 
substituted butyrola~tones.~~J~ Other routes involving 
chiral dihydrofuryl ketones or cycloaddition-lipase-medi- 
ated resolution have been recently reported.l* Catalytic 
carbon-hydrogen insertion with Rhz(MPPIM)4 is a novel, 
efficient, highly enantioseledive alternative to these 
methodologies, and its generality is evident in the 
examples provided. 
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